Approximate Joint Matrix Triangularization

نویسندگان

  • Nicolò Colombo
  • Nikos Vlassis
چکیده

We consider the problem of approximate joint triangularization of a set of noisy jointly diagonalizable real matrices. Approximate joint triangularizers are commonly used in the estimation of the joint eigenstructure of a set of matrices, with applications in signal processing, linear algebra, and tensor decomposition. By assuming the input matrices to be perturbations of noise-free, simultaneously diagonalizable ground-truth matrices, the approximate joint triangularizers are expected to be perturbations of the exact joint triangularizers of the ground-truth matrices. We provide a priori and a posteriori perturbation bounds on the ‘distance’ between an approximate joint triangularizer and its exact counterpart. The a priori bounds are theoretical inequalities that involve functions of the ground-truth matrices and noise matrices, whereas the a posteriori bounds are given in terms of observable quantities that can be computed from the input matrices. From a practical perspective, the problem of finding the best approximate joint triangularizer of a set of noisy matrices amounts to solving a nonconvex optimization problem. We show that, under a condition on the noise level of the input matrices, it is possible to find a good initial triangularizer such that the solution obtained by any local descent-type algorithm has certain global guarantees. Finally, we discuss the application of approximate joint matrix triangularization to canonical tensor decomposition and we derive novel estimation error bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error bounds for joint matrix decomposition problems

Joint matrix triangularization is often used for estimating the joint eigenstructure of a set M of matrices, with applications in signal processing and machine learning. We consider the problem of approximate joint matrix triangularization when the matrices in M are jointly diagonalizable and real, but we only observe a set M’ of noise perturbed versions of the matrices in M. Our main result is...

متن کامل

An improved block diagonal precoding scheme for MIMO multicast channel with two users

Matrix theory plays an important role in precoding methodology for multiple input multiple output (MIMO) systems. In this paper, an improved block diagonal (BD) precoding scheme is proposed for a MIMO multicast channel with two users, where the unitary precoding matrix is constructed in a block-wise form by joint triangularization decomposition. In order to reduce large signal-to-noise ratios (...

متن کامل

On Lie-algebraic-solvability-based feedback stabilization of systems with controller-driven sampling

We address state-feedback stabilization of discrete-time switched systems (DTSSs) that describe a continuous-time linear time-invariant (LTI) system sampled at varying rates. We consider a setting in which the controller, in addition to applying feedback, selects and varies the sampling rate. We refer to this situation as controller-driven sampling. Our feedback control design approach relies o...

متن کامل

Householder triangularization of a quasimatrix

A standard algorithm for computing the QR factorization of a matrix A is Householder triangularization. Here this idea is generalized to the situation in which A is a quasimatrix, that is, a “matrix” whose “columns” are functions defined on an interval [a,b]. Applications are mentioned to quasimatrix leastsquares fitting, singular value decomposition, and determination of ranks, norms, and cond...

متن کامل

Reliable numerical methods for polynomial matrix triangularization

Numerical procedures are proposed for triangularizing polynomial matrices over the eld of polynomial fractions and over the ring of polynomials. They are based on two standard polynomial techniques: Sylvester matrices and interpolation. In contrast to other triangularization methods, the algorithms described in this paper only rely on well-worked numerically reliable tools. They can also be use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.00514  شماره 

صفحات  -

تاریخ انتشار 2016